Exam. Code : 103201 Subject Code : 1025

B.A./B.Sc. $1^{\text {st }}$ Semester
 MATHEMATICS

Paper-I (Algebra)

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. The fifth question may be attempted from any section. All questions carry equal marks.

SECTION-A

1. (a) (i) Prove that every skew-symmetric matrix of odd order has rank less than its order.
(ii) If A is a skew-symmetric matrix, then show that $\rho(\mathrm{A}) \geq 2$.
(b) Find the rank of the matrix
$\left[\begin{array}{rrrr}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ by reducing it to
echelon form.
2. (a) Discuss for all values of k, the system of equations :

$$
\begin{aligned}
& (3 k-8) x+3 y+3 z=0 \\
& 3 x+(3 k-8) y+3 z=0 \\
& 3 x+3 y+(3 k-8) z=0
\end{aligned}
$$

as regards the nature of solutions.
(b) Test for consistency :

$$
\begin{aligned}
& 3 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

If consistent, solve for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ by finding the inverse of the coefficient matrix.

SECTION-B

3. (a) Prove that λ is an eigen value of n-rowed square matrix A over a field F if and only if $|A-\lambda I|=0$.
(b) Find the characteristic roots and spectrum of the matrix $\left[\begin{array}{rrr}2 & 3 & 11 \\ 0 & 3 & 17 \\ 0 & 0 & -2\end{array}\right]$.
4. (a) Verify Cayley-Hamilton theorem for the matrix A and find A^{-1} where :

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 5 \\
1 & 5 & 12
\end{array}\right]
$$

39(2119)/HH-6718
(b) Write down the quadratic form corresponding to

$$
\text { the symmetric matrix }\left[\begin{array}{ccc}
2 & 4 & 5 \\
4 & 3 & 1 \\
5 & 1 & 1
\end{array}\right]
$$

SECTION-C

5. (a) Prove that the range of values of two congruent quadratic forms are the same.
(b) Reduce the following quadratic forms to sum of squares by linear transformation :

$$
2 x^{2}+9 y^{2}+6 z^{2}+8 x y+8 y z+6 z x .
$$

6. (a) Reduce the following to canonical form and find the rank and index :

$$
3 x_{1}^{2}-3 x_{2}^{2}-5 x_{3}^{2}-2 x_{1} x_{2}-6 x_{2} x_{3}-6 x_{3} x_{4} .
$$

(b) Show that the following form is indefinite and find the set of values of the variables for which they assume positive, negative and zero values :

$$
11 x^{2}+14 x y+8 y z+14 x z
$$

SECTION-D

7. (a) Find the condition that the sum of two roots of $f(x)=a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0$ should also be a root. Verify the same condition for the equation $8 x^{3}-8 x^{2}+1=0$ and solve it.
(b) Form an equation whose roots are m times those of the given equation. Also transform the equation $2 x^{3}-15 x^{2}+24 x-7=0$ in which the third term is missing.
8. (a) Discuss the nature of roots of the cubic $x^{3}-6 x+4=0$ and solve it.
(b) Solve by Descart's method the following :

$$
x^{4}-2 x^{3}+4 x^{2}+6 x-21=0
$$

